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ABSTRACT

The method of activation energy asymptotics is used to describe the
entire history of a carbon particle suddenly immersed in a hot oxidizing
ambient. Under appropriate conditions which are established by the analysis
the history of the particle is shown to consist principally of a heat-up
period during which no significant chemical reaction takes place followed by a
period involving diffusion-limited mass loss and terminating in complete
particle consumption. Between these two extended periods brief ignition and
post-ignition periods are described. The final demise of the particle occurs
in a complex extinction period during which all the quantities describing the
particle behavior undergo large variations.
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SIGNIFICANCE AND EXPLANATION

Libby and Blake treat the combustion of single carbon particles in

quiescent ambients with various compositions. Although their analysis is

applicable to a variety of conditions, those encountered in entrained flow

combustion are emphasized. Accordingly, a cold particle is considered to be

injected into a hot ambient, generally involving oxygen but perhaps other

active species such as carbon dioxide and water as well. The history of such

a particle involves an initial, pre-ignition period during which the particle

is heated but undergoes no significant chemical reaction. When the ambient

temperature is sufficiently high, the particle reaches a critical, ignition

temperature and heterogeneous reactions involving the attack of carbon become

effective. This ignition period is followed by post-ignition behavior

.nvolving rapid increases in particle temperature which, as a consequence of

chemical reaction, generally exceeds that in the ambient. Under the

circumstances of practical interest and assumed to prevail in this study both

the ignition and post-ignition periods are brief but result in the rate of

mass loss by the particle becoming diffusion-limited. There ensues an

extended period involving a constant rate of mass loss and terminating in a

complex, although brief extinction period during which consumption is

complete. The brevity of the transition periods associated with ignition and

extinction implies that the principal features of particle behavior we

consider are given by a simplified analysis based on inert particle heat-up

and diffusion-limited comfbusion. The present study employs the method of

activation energy asymptotics (AEA) to rationalize such an analysis, to

establish the conditions for its applicability and to resolve the structure of

the transition periods.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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INTRODUCTION

Libby and Blake (1-31 treat the combustion of single carbon particles in quiescent ambients with various

compositions. Although their analysis is applicable to a variety of conditions, those encountered in

entrained flow combustion are emphasized. Accordingly, a cold particle is considered to be injected

into a hot ambient, generally involving oxygen but perhaps other active species such as carbon dioxide

and water as well. The history of such a particle involves an initial, pre-ignition period during which

the particle is heated but undergoes no significant chemical reaction. When the ambient temperature is

sufficiently high, the particle reaches a critical, ignition temperature and heterogeneous reactions involv-

ing the attack of carbon become effective. This ignition period is followed by post-ignition behavior

involving rapid increases in particle temperature which, as a consequence of chemical reaction, gen-

erally exceeds that in the ambient. Under the circumstances of practical interest and assumed to prevail

in this study both the ignition and post-ignition periods are brief but result in the rate of mass loss by

the particle becoming diffusion-limited. There ensues an extended period involving a constant rate of

mass loss and terminating in a complex, although brief extinction period during which consumption is

complete. The brevity of the transition periods associated with ignition and extinction implies that the

principal features of particle behavior we consider are given by a simplified analysis based on inert parti-

cle heat-up and diffusion-limited combustion. The present study employs the method of activation

energy asymptotics (AEA) to rationalize such an analysis, to establish the conditions for its applicability

and to resolve the structure of the transition periods.
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The method of AEA is a recent development in the theory of laminar combustion based on con-

sideration of reaction rates of the form C exp (- T / T) where C >> 1 is a nondimensional preex-

ponential factor, T is the activation temperature and T is the temperature. Typically (T / 7") >> I so

that the exponential factor is generally small. To resolve the ambiguity of the value of the product of

the two factors, one large and one small, we identify a temperature T - T /In C so that the reaction

rate becomes exp((T/Tk)(l- T/T)); in this form we see the product and thus the reaction rate is

small if T < Tk, equal to unity if T - T and large if T > T. Thus T is exposed as a critical tem-

perature while the reciprocal of the temperature ratio T / Tk is an appropriate expansion parameter.

Since its development, AEA has been applied to a variety of problems, e.g., by Law [41, Linan

(5), Krishnamurthy et al. 161, Peters 171 and Kassoy [8). A monograph devoted to AEA by Buckmaster

and Ludford 191 is near publication. In a recent paper Matalon 1101 applies AEA to the description of

the departure from chemical equilibrium in the gas surrounding a carbon particle undergoing oxidation.

In [21 Libby applies this method to the burning of carbon particles in order to establish a useful ignition

criterion and to explain qualitatively the abrupt changes in particle temperature predicted by numerical

solutions to the complete equations of thermal response.
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BACKGROUND AND ANALYSIS

We start our discussion with the development in [21 based on the more complete analysis in [11; these

references should be consulted for details. It is sufficient for present purposes to describe the basic

situation. We consider a spherical carbon particle of initial radius r. suddenly immersed in an oxidiz-

ing ambient with temperature T." and with a mass fraction of oxygen denoted Yj,. Nitrogen treated as

an inert diluent is the only other species far from the particle. Only the direct, heterogeneous reaction

C+ 1/2 02- CO is considered so that the gas mixture involves oxygen, carbon monoxide and nitrogen.

More general situations including those involving equilibrium composition in the gas phase, additional

heterogeneous reactions and additional species such as hydrogen and water (cf. 131) can be treated by

the methods used here, although increased algebraic complexity is involved. The temperature T. is

assumed to be sufficiently high so that ignition takes place.

The Basic Problem and Its Asymptotic Treatment

The physical situation described here leads to the following equations which are written in a form

appropriate for asymptotic analysis:

G' (&) - . A 9 + D +,0, R (1-94)) (1)

R() - - _ (2)
RR

K -e exp Lk-_- - -lR (Y,. +,a) e- ,a (3)

where

A- A(K)- K fI -ep(I- -K).-I)

D - D(K) -K eK 4 (I -e-K)-l + E)

a. - .4. ,_ __ _ _ _..--. -'



Burning Carbon Particles -4-

Equations 1-3 are subject to the initial conditions 0(0)-Ge, R (0)-l.

The principal dependent variables in these equations are: 0- T,/T., the particle temperature

divided by the temperature in the ambient; R - rp /ro, the instantaneous radius divided by its initial

value; and K > 0, a nondimensional parameter proportional to the rate of mass loss of the particle.

The independent variable 7 is a nondimensional time. The other quantities in Eqs. 1-3 are thermo-

chemical parameters, ?,, and the various I's, are constants of 0(1) related to the thermo-

dynamic and molecular properties of the solid and gas. The quantity q6, > 0 is a nondimensional

parameter related to the radiative properties of the particle and the ambient.

Although Eqs. 1-3 apply to a wide variety of conditions, the numerical examples in the present

study involve the following representative values: 6,-0.186, Y1 .- 0.2, A-4/3, ep-0.583, E-2.18.

More significant for our considerations is the small parameter e related to the large preexponential

factor k, in the description of the single heterogeneous reaction according to

/ - k(4)

where [(I >> 1 involves the product of a constant preexponential factor and of (pr,/ q.) where p is

the pressure and 7. is the viscosity of the gas mixture in the ambient. Thus k, increases directly with

increases in pressure and particle size and slowly with decreases in T,. Note that conditions of practi-

cal interest in entrained flows meet the requirement of k, >> 1.

The parameter e is also related to a particular value of the nondimensional temperature denoted

*k which is the critical temperature alluded to earlier and which we shall find is the ignition tempera-

ture; the relation is:

w /a - t e - 0b) (5)

where a, - T"./T, , the ratio of the ambient and activation temperatures, taken to be fixed.
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Several comments regarding Eqs. 4 and 5 are indicated. For a specific calculation of particle

behavior the temperatures T_ and T and thus the parameter a are known. In this connection we note

that although the asymptotic analysis is carried out for R1 - , oc, e--0, a is a key small parameter

determining the applicability of the asymptotic analysis to the specific calculation in question. We note

that an alternative asymptotic analysis could involve e,a--0, Ok fixed implying that both kI and T,

increase indefinitely. Here we adopt the more applied point of view and imagine that we are interested

in the effect on particle behavior of changes in the the factor (prp./7,.). In a specific calculation that

factor and thus kj are also known so that Eq. 4 determines e and Eq. 5 determines 0, which may thus

from our adopted point of view be considered a function of kl and a. Increases in K, due to increases

in the factor (pr,,/-) lead to decreases in e and in Gk. If we associate 0k with an ignition tempera-

ture, we conclude that the temperature at which vigorous heterogeneous reaction is initiated decreases

as the overall reaction rate is increased, a physically appealing conclusion. However, it must be noted

that Eq. 4 calls for large changes in k, to achieve relatively small changes in e. To illustrate we show

in Table 1 numerical values of e, kI and Ok. We observe that a halving of e requires an increase in K

by nearly four orders of magnitude while Eq. 5 implies an accompanying reduction of t9 by only one-

half %vith a held fixed.

The relations involving e, k, and 0k influence greatly the behavior of the mass loss parameter K

via Eq. 3. A consideration of the range of possible values of K is helpful in achieving understanding of

the asymptotic analysis and its applicability to a specific calculation. To that end we rewrite Eq. 3 as

K-f' exp I- ( .JJR (YI, + A) (eK - e~ (6)

where the special value of K denoted Kd is defined by exp (- Kd) - T/( Y. +A) and is the diffusion-

limited rate of mass loss, the rate determined by the ability of oxygen to diffuse to the surface of the

particle independent of the kinetics of the heterogeneous reaction. For the values of the thermochemi-

cal parameten used in the numerical examples Kd - 0.140.
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We now discuss Eq. 6; prior to ignition when 0 < 0k (meaning bounded away from Ok in the limit

a-0) and R =-1, Eq. 6 indicates that K is basically an exponentially small quantity and the rate of

mass loss is kinetically controlled, i.e., diffusion of oxygen to the surface of the particle provides no

effective inhibition to mass loss. Ignition occurs when *k0--0(G) so that K-0(E). The

identification of Ok with ignition is now clear.

Further increases in 0 above 0k lead to 0(1) values of K. For example, when (Ok/0) -

I -- eln (I/)+0( ) and R-0(0), the exponential term in Eq. 6 is large, of 0(/) and K-0(0).

However, the growth of K is limited by the last factor on the right side of Eq. 6, i.e., by K-Kd-, so

that the growth in the magnitude of the exponential term with increasing 0 is compensated by decreas-

ing values of the last factor. When K- K4- , Eq. 6 can be rewritten in the following illuminating

form:

' k
Kl '- - eA T 7

Equation 7 applies provided the second term on the right side is suitably small compared to unity. T' is

is the case as E--.0 provided 0 is sufficiently large for the operative order of magnitude of R. For

example, if R -0(1) and

9 . __ (8)
S k  I -- e In WO())

where >> 0(/), e.g., _e- 2, K--Kd. However, as complete consumption of the particle is

achieved so that R - 0(), then Eq. 7 applies and the rate of mass loss is diffusion-limited only if

*k I - e In (1"(a))

where >> 0(l/ 2 ), e.g., ,-a - . Compared to the result for R-() we vee that the temperature

deviation from 0k must be larger when R << I if diffusion-limited behavior is to prevail. It shoul d be

noted that when 0 > 0k and e -0, the factor e exp(( - (0k /0))/e) is exponentially large so thi it R

must be exponentially small if K-0(i)<Kd. In contrast we observe from Eq. 7 that for
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R-0(0) K-Kg if 0-Gk-eln(.(e)/eR) where y(E)>> 0() and R have an algebraic dependence

on e. We thus conclude from Eq. 7 that diffusion-limited behavior occurs for both R - 0(1) and

R- 0(1) in an algebraic sense if 0-0k - 0(ElnU()) provided A.(e) is suitably but algebraically large

in the limit e -0, suitably being determined by the requirement that the second term in Eq. 7 be small

compared to unity. Thus only a small deviation from Ok is required to achieve diffusion-limited mass

loss. These arguments represent a generalization of the 0,- sequence introduced by Libby (2] and used

to explain qualitatively the particle behavior predicted by exact numerical solutions to the describing

equations.

The question arise as to the applicability of these results related to E-,0 for a specific calculation

involving a finite but small value of e. From a consideration of Eqs. 3 and 7 we cannot be assured that

for a particular value of e the actual histories 0(r) and R (r) respect the requirements for diffusion-

limited behavior predicted by the asymptotic analysis for small increments in 0 above Ok. However, we

seek within the asymptotic analysis itself symptoms of failure, i.e., failure to achieve diffusion-limited

behavior. An indication of such failure is indicated in Table 2 where we show the dependence of the

second term on e and 0 for R - I with the thermochemical values used in the numerical examples.

Note that for our specific value of a, namely a - 1/9, the limiting value of e for ignition

corresponds to Ok - 1 and is thus equal to 0.111. We see from Table 2 that the range of values of f

and 0 yielding diffusion-limited behavior in a specific calculation and thus consistency with the asymp-

totic analysis may call for values of e smaller than are usually found to be acceptable in asymptotic anal-

yses.

The history of a carbon particle suddenly immersed in a hot oxidizing ambient as described earlier

can now be reexamined. During pre-ignition 0 < 9k, R - 0(1) and K < exp (-a-'(Ok/0- 1)), i.e., K

is exponentially small. In the neighborhood of O0-k abrupt changes take place in 0 and K, changes

associated with the ignition and post-ignition periods which are found to have durations of 0(E) and

0 (* In (I/)). Under appropriate circumstances an extensive period of diffusion-limited behavior can

ensue with 0- Ok > O(a In (/)). Although it is characteristic of all of these periods that 0' (r) > 0,
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eventually the right side of Eq. I must vanish. Thereafter a complex extinction process evolves in

which 0' (T) < 0 and 0- 1.

With the basic situation described we now can take up the details of the analysis. In [2) the prc-

ignition and ignition periods are studied by eliminating r between Eqs. I and 2 so that the differential

equation dR/de is subjected to asymptotic analysis. In this approach the time variation is found in the

form 7 -7(8) from knowledge of R-R(O). Here we find analysis of the particle history prior to

extinction is handled more conveniently with r retained as the independent variable.

Nre-Ignition and Ignition Periods

If R - 0() and G(0) < 0 < Ok so that K and R - 1 are exponentially small, R -1 and Eq. I becomes

0'() - 3 e #-)4) (9)

which describes the thermal response of a spatially homogeneous, inert sphere subject to conductive

and radiative heating. A supercritical response, i.e., one involving significant chemical reaction and par-

ticle consumption, evolves only if 0' (r) > 0. This inequality is met if Ok < I so that we establish one

limitation of the asymptotic analysis. For a given value of k, and thus of e the value of Ok depends on

a; we thus appreciate its important role in determining particle behavior. An inverted quadrature of

Eq. 9 gives 7 -,r(). It follows that the duration of the induction period given by 7k is known once 8k

is known from the specified values of e and a. The solution of Eq. 9 in the neighborhood oft - =k is

G(T < 70)- O {1I + \ 2(,r - r) + ... 0)(10)

where X2-3( (-Gk )+, (l-9))/9k>0for Ok < I has a known value assumed to be 0() in the

limit 1-0.

Centered about rk is the ignition period during which 9 and K increase and R decreases. To

describe this period we find that the appropriate scaling transformations are



Burning Carbon Particles -9-

Ok (I+E+ )

R t- I - E
2 R2  (ll)

7 
= k + C-

Then Eh. 3 gives K=e Yt- exp(0 1)Yl<< I to a first approximation. With A(K) and D(K)

appropriately expanded about 0 =0 A Eqs. I and 2 become

't (}) - A2

'2 () Y,. e

The following solutions which match properly to the pre-ignition solution for 0 and to R - I are readily

found to be

) () = -

(12)

Yioo

,k M " eA2

The e\ponential growth of K limits the validity of the expansion in Eq. HI. In particula, %4I)rr,

c exp(A 2 )= 0(1), then K- 0(1), E2 h 2 = 0(E), E01 - E In (I/E)+ 0() and f7

,E In (l/e)/X2 + 0(e). If we define , - -21n(I/e), then it follows from Eq. 12 that

O r,- ,) ok I -,eIn 0/0 + X2 (T , ,, + . !

7T, Tk - '
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Post-Ignition Period

The nonuniformities in the solutions for the ignition eriod imply that in the next region

0r0kll+(Elnh)+EGl+ "  ) ,

- J+ "'(14)

7 =r + 7 7 - in (.) - f

Substitution into Eqs. 1-3 yields

--- [A , + D + 

A, ( ) M - (15)

K -r e" 41 Y,. + fl) e- - _A)

It should be noted here that we are considering a particle with a temperature still close to the ignition

temperature Oe and with a radius with R 1. However, the third of Eqs. 15 implies that significant

mass loss is encountered because K - 0().

As long as the term within brackets on the right side of the first of Eqs. 15 is positive, the tem-

perature variation is monotonically increasing. Accordingly, it worth examining the variation of this

factor with K. In Table 3 we give for the thermochemical values used in the numerical examples the

variation of the quantities A (K) and D(K). We deduce therefrom that the factor in question is posi-

tive over the entire range of K provided that 9, < 1 as required earlier.

Equations 15 must be solved numerically subject to matching to Eq. 13 and to the vanishing of A1

as f -o; thus we require
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TABLE 1

E K,-eell' Ok-E/a

0.06 1.04 (106) O.06/a

0.08 2.15 (104) 0.08/a

0.10 2.20 (103) 0.10/a

0.12 4.99 (102) 0.12/a

TABLE 2

E Ok 0-1 0-1.5

0.06 0.54 5.9 x 10 2.9 x 10

0.08 0.72 2.8 x 10 1  1.4 x 10- 2

0.10 0.90 2.5 1.4 x 10' 1

TABLE 3

K A (K) D(K)

K-0 -0.583 0.583

0.02 -0.569 0.621

0.05 -0.548 0.678

0.1 -0.513 0.772

Kd -0.1 4 0 -0.485 0.848
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Rl (f-'-c) f 0

As f -- 0 increases in an unbounded fashion and it follows that as a consequence

.. )+ 3 [Adek + Dd + e,(I _ 4))

Ad =-A (Kd) > 0

D ta D(Kd) > 0

so that

O (f -° - Ok I + e In (l)+ e (o2 i + K, ) + "' •

The present analysis is valid provided w 2_0(1) > 0. In fact for specific thermochemical values we can

determine a special value of Ok denoted 0 which makes (2 vanish. Thus we have

-AdO; + Dd + 0 (1 _ 0;4) - 0

For the values used in the numerical examples 9 - 1.234. This value identifies a second limit on the

applicability of the present asymptotic analysis to a specific calculation. Physically, 0; is the tempera-

ture a particle with R =-1 can achieve when it undergoes diffusion-limited chemical reaction. The

analysis is self-consistent provided the second term on the right side of Eq. 7 with 0- 0; and R - I is

suitably small compared to unity. This requirement defines loosely a maximum value of e; for exam-

ple, if we permit the second term to be 0.1, e can be as large as 0.085. If we require that term to be

0.01, e can be as large as 0.07. Accordingly, when we compare the prediction of the asymptotic analysis

with exact numerical calculations, we take e - 0.060 but to illustrate the nature and extent of the

disagreement which results when the asymptotic analysis is overextended, we also present results for
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E - 0.090. If e is suitably small, we conclude that once a supercritical event is initiated, particle con-

sumption proceeds with vigor.

The interesting nonuniformity occurs when ef - 0(1). Equations 14 then imply that ERt - 0(1)

and 01- 0(1). Since 01 becomes unbounded, it follows from the third of Eqs. 15 that K-Kd and

that the diffusion limit is achieved while R - 0(1).

Diffusion-Limited Period

The nonuniformity at the end of the preceding period suggests that the appropriate variables for this

succeeding period are

0 - 0 (s), R - R (s), 7 -- k+ in + I4'K
A(EA'd' Kd ei

(16)

where 0 > 0k. It follows that the mass loss is basically constant K - K, while the dependent variables

9 (s) and R (s) retain their primitive form implying 0(1) changes from 0k and unity respectively. The

equation for R (s) can be integrated directly to yield

R - (1 - 2s) /2  (17)

where we impose the condition R (s - 0) - 1. Equation 1 becomes

dO -AdO + DA + .0, (1 -2s) I/ 1 (1 04) (18)

ds Kd(0 - 2s) -- *e-s 1 t

Equation 18 must be solved numerically subject to the initial condition O(s - 0) -Ok.

We obtain immediately from Eq. 17 an estimate for the extinction time since R -0 when s - 1/2;

thus
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Ir. -r, + (2 X) -  (19)

It is interesting to note that the increment added to the induction time depends only on the concentra-

tion of oxygen in the ambient and on the molecular weight parame'ur Ai. This implies that particle life-

times in pure oxygen should be one quarter those in air provided the induction period is relatively

brief. The experimental results reproduced in [1] for the lifetimes of a wide variety of carbon contain-

ing particles in air and pure oxygen are in accord with this estimate.

Comparison of Exact and Asymptotic Solutions

The combination of the pre-ignition period plus the diffusion-limited period obtained from the solution

of Eq. 18 provides the main features of particle behavior according to AEA. At this juncture it is thus

appropriate to compare exact numerical calculations with the predictions of the asymptotic analysis. As

indicated earlier we do so for two values of e: 0.060 and 0.090. One is suitably small so that the two

limits on the applicability of the asymptotic analysis are respected and the second too large for the con-

dition resulting in K - Ki to apply. However, both values of e with our fixed value of a yield suitable

values of t,, namely 0.540 and 0.810 respectively. The previously given values of the thermochemical

parameters apply.

Figures 1-3 give the variations with 7 of the particle temperature parameter 0, of the particle

radius in terms of R and of the mass loss parameter K respectively. For the larger value of e, i.e., for

the smaller chemical kinetic rate, ignition is delayed, the rate of mass loss is smaller than the diffusion-

limited rate and the particle lifetime is increased.

Also shown on these figures are the predictions based on the asymptotic analysis for the two dom-

inant periods of particle lifetime, the pre-ignition and diffusion-limited periods. First we call attention

to the response of the inert particle as given by the solution of Eq. 9 and the two values of the ignition

time T", associated with that response. These predictions are in good agreement with the exact solu-

tions. For the smaller value of e we see that the asymptotic analysis predicts many features of particle
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Figure 1. The temperature histories of particles: exact numerical solutions;

iasymptotic solution for e - 0.060.
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Figure 2. The radius histories of particles as given by exact numerical solutions.
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Figure 3. The variation of mass loss parameter (see Fig. 1 for legend).
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behavior with an accuracy acceptable for most purposes. This is not the case for -0.090. Here the

difference between the exact and diffusion-limited rate of mass loss predicted by the asymptotic analysis

leads to a considerable error in particle lifetime. It is worth noting that for -0.060 the value of K

given by the exact solution is slightly less than Kd reflecting both the large but finite magnitude of the

exponential factor in Eq. 3 and the small but nonzero value of the second term in Eq. 7.

It will be found convenient in the analysis of the extinction period to obtain solutions in the form

O-O(K) and it is therefore of interest to examine the details of the transition from inert particle

behavior (K 0) to diffusion-limited behavior (K - Ki) in this form. We do so for both the exact

and asymptotic solutions in Fig. 4 for a - 0.060. The satisfactory agreement between the two solutions

is noted.

We thus conclude from these results that AEA provides a useful approximate description of parti-

cle behavior provided that the reaction rate parameter kT is sufficiently large for the expansion parame-

ter * to be appropriately small and that the temperature ratio parameter a is similarly small.

The Extinction Period

Although the main results of practical utility are given by the analysis presented to this juncture, the

elaborate structure of the extinction period during which 0-1 and R--.0 is interesting. It is clear

from the form of Eq. 18 that a singularity develops in the 9-solution when s-.-- . By elementary

means we find that

sJ-" --O-m i--s1 + (20)

where

The rsi u l- 3 , ( 9" -i )/n t A - 9 ) a

~The singularity indicated by Eq. 20 is weak in the sense that 0 approaches a finite value while its
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Figure 4. The transition from inert of diffusion-limited behavior for am 0.060 (see FMg. I for legend).
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derivative is infinite and defines one side of a cusp-like variation of 6(). Values of practical interest

imply that m - 0(1) > 0 and we therefore assume this inequality prevails. The implication is that as

complete consumption of the particle is approached its temperature increases.

The numerical solution corresponding to e - 0.060 and shown in Fig. I indicates the nature of the

0(0) transition made by 9 from Ok to G". The temperature parameter * -- 1.75 in the present calcula-

tions. It is essential that 1" > 1 in the limit e - 0 in order for cusp-like behavior to prevail. We note

from the third of Eqs. 16 that the exponential term is exponentially small as e -0 provided 8" > 0k. It

follows that R must likewise be small before the mass loss rate decreases from its diffusion-limited

value. This behavior is typical of systems involving high activation energies where the reaction once

initiated proceeds vigorously until the reactant supply (in the present case proportional to the surface

area of the particle) is nearly eliminated. This argument is consistent with our earlier discussion of

Eqs. 3 and 7.

On physical grounds we expect the extinction period to involve a reversal of the sign of the slope

of O() from the positive value prevailing at the end of the diffusion-limited period. During this period

0 declines from 0' to 1+ while K decreases from Kd toward zero. We find that this period, although

brief, involves a complex structure which is more conveniently analyzed by a reformulation of the basic

equations as follows: If R - R (K, 0) is found from Eq. 3 and used to convert Eq. 2 into the equation

R K )+ R- K (21)
8K 80 R

we obtain the single equation for 0 0(K)

dO 9'R OR
OK

dKdK K +R R- G'

which becomes after some calculation

39 [A A+ D +,0,R (I-04))J(1+ KQ1-exp (K - Kd)Y(22
dM K 2 - (3 Ok /O 2 ) (A + D + 0,R( - ))(
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If an appropriate solution to Eq. 22 is obtained, Eq. 21 supplemented by R- R (K,G (K)), yields K (r)

and hence in terms of K as a parameter the other time histories, R (r) and 8(T).

We show in Figs. 5 and 6 the exact numerical solutions in terms of O(K) and R (K) for E-0.060.

As time increases K decreases from its limiting value K,-0.140. The radius parameter R decreases

monotonically toward zero while the temperature parameter 0 exhibits the more complex behavior sug-

gested earlier. Our task is to provide an asymptotic analysis approximating these characteristics as

tE - 0.

To construct a description of the first portion of the extinction period, denoted Zone 1, we follow

a two-step procedure; first Eqs. 18 and 20 suggest the forms

0' -) (23)

K-= Kd Q - () + -. W)

It follows from Eq. 3 that if X(E)G << 0(E)

R =- (e)K K (24)

The importance of the inequality on X is emphasized. As a second step the form of X(E) is found by

retaining in Eq. I the second terms in the expansions of A (K) and D(K) about K - Kd and by requir-

ing that these terms, previously neglected, be retained as e-0. As a result we find a distinguished

limit if

X - (K A )'A exp [- 1 - (25)

We note that this result indicates that the perturbations in Eq. 23 and in the particle size given by

Eq. 24 are exponentially small in the limit E-0 provided 0' is suitably large. This restriction is
respected for sufficiently small values of E, e.g., for E -0.060. The different behavior near extinction
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Zone 2

/ ~ Zone I

0
K

Figure 5. The temperature history during the extinction period: e -0.060; exact

numerical solution; - - -asymptotic solution within the range of their validity;

-. -. - asymptotic solution beyond the range of their validity.
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0

008)~

Figure 6. The radius history during the extinction period (see Fig. 5 for legend).
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shown in Figs. 1-3 for the two values of e suggests as might be expected that the asymptoi. analysis is

inapplicable for the larger value near extinction as well as earlier in the particle lifetime.

With Eqs. 23 and 25 substituted into Eq. 22 we obtain

-O 0 C , ("- )

do C4 +  4,0"--i) (26)
WdK aX 9 d KIr K2

where Cd=- A '(K- Kd)O + D'(K - Kd) - ,Kde-K(" - 1)(1 - e-Kd) 2 and a 3 AdIKd are positive

constants. To match the solution of Eq. 26 to the behavior of Eq. 20 as s = 1/2- requires

i ( -0)==m/(O*Kdk)

The solution of Eq. 26 is

3Cd k+ 3.r ( - ) (27)
"(a + 1) 0" (a - 1) KK(

In Eq. 27 a complementary solution K - is suppressed since with a > 1, the required behavior as

K - 0 prohibits its retention. The coefficient of k- equals (m/OK 4 ) so that matching is assured.

The 0-solution obtained from Eqs. 23 and 27 describes the approach with increases in time toward

0* and its departure therefrom as K increases. The concomitant decline in the radius is obtained from

Eq. 24. Consequently the solution which rounds off the cusp-like behavior given by the preceding

period takes place on a small time scale defined by -- ('rk + (1/2K 4 ) + 2e In (lIe)) - O (X2(e)).

We show on Figs. 5 and 6 the asymptotic solutions as dashed lines within the range of validity of

K and extend them beyond that range as dot-dashed lines. When this procedure is followed for the

solutions given by Eqs. 27 and 24, we find that within plotting accuracy the asymptotic and numerical

solutions cannot be distinguished within the range of validity of the former. As a consequence only the

extensions of these solutions for Zone 1 appear on Figs. 5 and 6.
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To find the solution in the layer denoted Zone 2 let

-"(1 -gs(k) + •••) (28)

K -Kd(-ek+ ... )

As a consequence of these forms

R = (2exp (Ok g/ )/Ed k

which indicates a further dramatic reduction in particle radius. Then Eq. 22 becomes

4 =_ ag - (3 Cd/O') k (29)
dk k - (0,/#') ( g- (3 Q1/0') k)

which is to be solved subject to the matching condition g(k -. 0) -- 0.

For increasing values of k corresponding to increasing time the asymptotic form of Eq. 29 is

dk Ok k

which has the solution

g(k -oo) In k + g. (30)O"

It follows from Eqs. 28 and 30 that the solution in this zone is singular when ek-O (1) which

corresponds to eg - 0 (s In (I/*)) and R -0 (X2/). Significantly, the nonuniformity with respect to

K suggests that the mass loss declines significantly from Kd in the next zone.

Numerical solutions to Eq. 29 and to the related solution for R - R (K) are added to Figs. 5 and 6

to permit comparison with the exact r, merical results. Again the asymptotic solutions are continued by
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dot-dash lines beyond an appropriate value of K to indicate their range of validity. Satisfactory agree-

ment between the two solutions is achieved.

We find that in the next zone, Zone 3, in which K declines rapidly we must take

0--" 1-- eIn )eh(K)+ .(31)

The equation for h (K) is

dK I -exp (K-K6 )

which is to be solved subject to the matching condition

h(K -Ki-) -- -i I K- K) + g"
e- Kd -K

The O ti constant of integration g, is obtained from the K-solution (Eq. 29). The solution of Eq. 32 is

- (In [K -In exp ((K - K) -11) (33)

When comparison between the asymptotic and numerical solutions is considered, we encounter a

practical limitation of the former solutions. For the values of the parameters used for the numerical

solutions we find that the second term on the right side of Eq. 31 is 0.54, indicating that the value of

e -0.060 overstrains the asymptotic analysis. Accordingly, we cease making comparison of the two

solutions but for completeness carry through the asymptotic analysis with the expectation that agree-

ment with numerical solutions would be achieved for suitably small values of a. For example, with all

other parameters fixed at their present values a value of e-0.022 would make the second term in

Eq. 31 equal to 0.1, an appropriately small value.

When Eq. 33 is substituted into Eq. 32, we find that a nonuniformity occurs when

(9'/0k)f In (/K) - 0(1) implying that the mass loss rate becomes vanishingly small at the end of this

LL ....
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zone. As a consequence the temperature decreases further from 0. Physically, the chemical reaction

weakens, permitting convective cooling to reduce the temperature of the dying particle so that 9 - 1.

Also in this zone Eq. 3 indicates that R remains nearly constant at a small magnitude of 0 (X2/0).

The major decline in a toward unity occurs in Zone 4 in which it is found convenient to scale K

by the transformation

K - exp ~ (34)

which defines p as a new 0 (1) independent variable. This exponential transformation is suggested by

the nonuniform behavior of the solution in the preceding zone. Then to all algebraic orders in a the (I-

equation is simply

G(P - 0)- 0*

where the latter is the appropriate matching condition. The solution of Eq. 35 is

where the limit on p is required to prevent the temperature from dropping below unity. During this

cooling phase the exponentially small radius is basically constant and given by

AR OR - 2  expj-lrJ (36)

These results can be used in an appropriate form of Eq. 1 to show the time-dependence of the tempera-

ture decline; we find that

0-1 + (9* - 1) exp J_ 3ti, (r - r') J(37)
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whereT" - rk + (1/2Kd) + X- 24 In (i/0. The small variation from the extinction time should be noted,

the extremely brief time scale of the major temperature decline being implicitly indicated by the

exponent in Eq. 37. This result is valid for all algebraically small orders of e.

Further decay of a minute nature occurs as R -- 0 and 9 " 1. This zone provides little additional

information on particle behavior and is not considered further.

.1
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CONCLUDING REMARKS

The method of activation energy asymptotics is applied to the burning of carbon particles in a hot oxid-

ing ambient. To simplify the analysis gas phase reactions are assumed negligible and only the direct

heterogeneous reaction between carbon and oxygen is taken into account. It is shown that a complete

description of particle history is largely given by an induction period during which the particle is heated

to an ignition temperature and by a subsequent period during which the rate of mass loss is diffusion-

limited. Such a picture is not dissimilar to earlier approximate calculations of particle behavior based on

ad hoc assumptions. However, the present analysis provides clear indications of the conditions under

which the analysis applies. In fact a significant portion of our discussion relates to the applicability to a

specific calculation involving e small compared to unity but nonzero of the limiting behavior arising

when the small parameter e - 0. The asymptotic analysis provides estimates for quantities of applied

interest: conditions under which ignition occurs, conditions for diffusion-limited mass loss and the

times for ignition and complete consumption.

The results of two representative numerical examples, one respecting the limits of applicability of

the asymptotic analysis and a second overextending that analysis, are compared with the predictions of

AEA. Good agreement is found for the former while as expected significant disagreement is found for

the latter.

During a brief extinction period all of the quantities describing particle behavior undergo

significant variations. As a consequence the asymptotic solutions for this period are complex and

impose significant limitations on the acceptable size of the expansion parameter. In fact only two of the

four zones found to be required are compared to an exact numerical solutions.

Extension of the present analysis to include gas phase reactions and more complex composition in

the surrounding ambient can be carried out at the expense of increased algebraic complexity. However,

the main features of the analysis of applied interest, namely the description of the induction and a

diffusion-limited periods, may involve straight-forward considerations.
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NOMENCLATURE

a, Cd, m parameters arising in the extinction period

A (K), D(K) functions of mass loss parameter

Ip nondimensional parameter related to the coefficient of specific heat at constant pressure

E thermochemical parameter

S, h perturbation functions arising in extinction period

K mass loss parameter

Kd diffusion-limited value of K

K(I nondimensional reaction rate parameter

k perturbed mass-loss parameter

instantaneous particle radius

rpo initial particle radius

R nondimensional radius parameter

s transformed time variable

T temperature

Ta activation temperature

T.. temperature in surrounding ambient

Y1. oxygen concentration in surrounding ambient

Greek Symbols

a temperature ratio, T.lT

4, ,, thermochemical parameters

i . . . . . .. .. . ... ... ..-... ... -il i l i l i 2 , . . .. . ... .. . . . . .. . .
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9 nondimensioflal temperature parameter

Ok sGk , * nondimensional temperature parameters arising in AEA

expansion parameter

Ji, jLmolecular weigh~t parameters

radiative parameter

),2,o)2  parameters in AEA

nondimensional time

f transformed time variable
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